Observationson COTS Softwar e I ntegration Effort Based on the
COCOTS Calibration Database

ChrisAbts, M..S.

Salvatori Hall Room 328
941 W. 37" Place
Los Angeles, CA 90089 USA
+1 213 740 6470
cabts@sunset.usc.edu

ABSTRACT

As the wuse of commercia-off-the-shelf (COTS)
components becomes ever more prevalent in the creation of
large software systems, the need for the ability to
reasonably predict the true lifetime cost of using such
software components grows accordingly. This paper
presents empirically-based findings about the effort
associated with activities found to be significant in the
development of systems using COTS components. The
findings are based upon data collected for the purpose of
calibrating the COCOTS [1,2] COTS software integration
cost model, an extension to the COCOMO |1 [3] cost model
designed to capture costs COCOMO does not. A brief
overview of COCOTS is presented to put the data in
perspective, including its relation to COCOMO II. A set of
histograms is then shown summarizing the effort data
collected to date, then the latest calibration results. The
paper concludes with some observations suggested by an
examination of that calibration data.

Keywords

COTS, COTS integration, COTS assessment, COTS
software lifecycle, COCOMO I, cost estimation, effort and
schedule estimation, metrics, software engineering

1 INTRODUCTION

COCOTS is the acronym for the COnstructive COTS
integration cost model, where COTS in turn is short for
commercial-off-the-shelf, and refers to those pre-built,
commercialy available software components that are
becoming ever more important in the creation of new
software systems.

The rationale for building COTS-containing systems is that
they will involve less development time by taking
advantage of existing, market proven, vendor supported
products, thereby reducing overall system development
costs. But there are two defining characteristics of COTS
software, and they drive the whole COTS usage process:

Barry W. Boehm, Ph.D.
University of Southern California University of Southern California
Salvatori Hall Room 328
941 W. 37" Place
Los Angeles, CA 90089 USA Haymarket, VA 20169 USA
+1 213 740 5703
boehm@sunset.usc.edu

Elizabeth Bailey Clark, Ph.D.
Software Metrics, Inc.

4345 High Ridge Road

+1 703 754 0115
BetsyClark@erols.com

1) the COTS product source code is not available to the
application developer, and

2) the future evolution of the COTS product is not under
the control of the application devel oper.

(Note: in some cases, COTS software does come as source
code, but for the purposes of our model, if the developer
does anything to that code other than compile it unchanged
into his own code, we treat that as a reuse item and model
its usage asadapted code within COCOMO 11 itself.)

Because of these characteristics, there is atrade-off in using

the COTS approach in that new software development time

can indeed be reduced, but generally at the cost of an

increase in software component integration work. The long

term cost implications of adopting the COTS approach are

even more profound, because you are in fact adopting a
new way of doing business from the moment you start

considering COTS components for your new system to the
day you finally retire that system. This is because COTS
software is not static; it continually evolves in response to

the market, and you as the system developer must adopt

methodol ogies that cost-effectively manage the use of those
evolving components.

2 RELATION TO COCOMO Il

The software development cost estimation model
COCOMO (COnstructive COst MOdel) was originaly
published in 1981 [4], and has recently been reincarnated as
COCOMO 11 [5] to reflect current software development
practice. It creates effort and schedule estimates for
software systems built using a variety of techniques or
approaches. The first and primary approach modeled by
COCOMO is the use of system components that are built
from scratch, that is, new code. But COCOMO Il also
allows you to model the case in which system components
are built out of pre-existing source code that is modified or
adapted to your current purpose, i.e., reuse code. The key
word in the preceding sentence issource. Even though you

© 2000, USC Center for Software Engineering

are not building the reuse component from scratch, you still
have access to the component’s source code and can
rewrite or modify it specifically to suit your needs.

What COCOMO I currently does not model is that case in
which you do not have access to a pre-existing
component’s source code. Y ou have to take the component
asis, working only with its executable file, and at most are
able to build a software shell around the component to
adapt its functionality to your needs.

This is where COCOTS comes in. COCOTS is being
designed specifically to model the unique conditions and
practices highlighted in the preceding section that obtain
when you incorporate COTS components into the design of
your larger system.

3 COCOTSMODEL OVERVIEW

COCOTS at the moment is composed of four related
submodels, each addressing individually what we have
identified as the four primary sources of COTS software
integration costs. (This is a key point. COCOTS currently
deals only with initial integration efforts. We have already
begun taking the first steps toward expanding the model to
cover long-term lifecycle and maintenance costs associated
with using COTS components. However, that topic will
remain outside the scope of this paper.)

Initial integration costs are due to the effort needed to
perform (1) candidate COTS component assessment, (2)
COTS component tailoring, (3) the development and
testing of any integration or "glue" code (sometimes called
“glueware” or “binding” code) needed to plug a COTS
component into a larger system, and (4) increased system
level programming and testing due to volatility in
incorporated COTS components.

(A fifth cost source was actually identified early in our
research. This was the cost related to the increased
verification and validation effort unrelated to COTS
volatility but still usually required when using COTS
components. But attempts have been made to capture these
costs within the glue code and tailoring submodels directly
rather than specify afifth independent submodel.)

Assessment is the process by which COTS components are
selected for use in the larger system being developed.
Tailoring refers to those activities that would have to be
performed to prepare a particular COTS program for use,
regardless of the system into which it is being incorporated,
or even if operating as a stand-alone item. These are things
such asinitializing parameter values, specifying I/0O screens
or report formats, setting up security protocols, etc. Glue
code development and testing refers to the new code
external to the COTS component itself that must be written
in order to plug the component into the larger system. This
code by nature is unique to the particular context in which
the COTS component is being used, and must not be
confused with tailoring activity as defined above. Volatility

Staffing

in this context refers to the frequency with which new
versions or updates of the COTS software being used in a
larger system are released by the vendors over the course of
the system's development and subsequent deployment.

A

? LCA

! (preliminary
design review)

(]

i 10C

i (system
= delivery)

. Lco
; (requirements
review)

3. Glue Code
Development

2.COTS
1.COTS Tailoring

Assessment

New System Development
Not Involving COTS Components

4. System Effort due to COTS Volatility

>

COCOTS Effort Estimate

Time

LCO - Lifecycle Objectives
LCA - Lifecycle Architecture
10C — Initial Operational Capability

COCOMO Il Effort Estimate

Figure 1. Sources of Effort

Figure 1 illustrates how the modeling of these effort
sources in COCOTS is related to effort modeled by
COCOMO 1. The figure represents the total effort to build
a software system out of a mix of new code and COTS
components as estimated by a combination of COCOMO |1
and COCOTS. The central block in the diagram indicates
the COCOMO 11 estimate, that is, the effort associated with
any newly developed software in the system. . The smaller,
exterior blocks indicate COCOTS estimates, that effort
associated with the COTS components in the system. The
relative sizes of the various blocks in this figure is a
function of the number of COTS components relative to the
amount of new code in the system, and of the nature of the
COTS component integration efforts themselves. The more
complex the tailoring and/or glue code-writing efforts, the
larger these blocks will be relative to the assessment block.
Also, note that addressing the system wide volatility due to
volatility in the COTS components is an effort that will
obtain throughout the entire system development cycle, as
indicated by the long block running along the bottom of the
figure.

Finally, we caution the reader to not draw the erroneous
conclusion that the various sources of effort being
discussed can be as cleanly parsed as would appear to be
indicated by the distinct boundaries drawn for each block.

The redlity is that rather than sharp lines, these boundaries
would probably be more realistically shown as areas of
different shading that blend into each other. This is
particularly true for the boundary between the bottom
volatility block and the larger system block.

4 CALIBRATION DATABASE SUMMARIES

We currently have 20 data points (information on historical
industrial software projects using COTS components) in
our possession, and our data collection efforts are ongoing.
The histograms that follow indicate how many projects (or
elements of projects) collected to date manifest a given
attribute.

The distribution of data points across various
project domains:

Air Traffic Management (40%)
Business (including databases) (15%)
Comm/Navigation/Surveillance (20%)
Logistics (5%)

Mission Planning (5%)

Operations (10%)

Web-based Maps (5%)

The classes of COTS products found in these
projects:

Back office/retail

Configuration mgmt/build tools
Databases

Data conversion packages
Devicedrivers

Disk arrays

Compilers

Communication protocol s/packages
Emulators

Engineering tools

Graphic information systems
GUIZ/GUI builders
Middleware

Network managers

Operating Systems

Problem mgmt

Report generators

Software process tools
Telecommunication & infrastructure
Telemetry analysis

Telemetry processing

Word processing

The preceding demonstrates that we have the beginnings of
a varied cross section of domains and products, which is
desirable when attempting a general calibration of an
estimation model. Also, nearly all of the projects went
through initial delivery within the last 3 years, so the dataiis

recent, which is also helpful; i.e., it should reflect current
practice.

The development processes followed by the
various projects while creating these COT S-based
systems:

Waterfall (40%)

Spiral (35%)

Incremental (20%)
Evolution/Prototype (5%)

Project delivery dates:

93 94 95 96 97 98 99 2000

Overall project duration;

12

0-2yrs 2-4yrs 4-6yrs

8-12yrs

Overall project effort:

Overall project SLOC:

0-200k 200k-400k 600k-800k

sloc

1m-3m

Project glue SLOC (reflects multi-COTS classes per
project):

0-6k 6k-12k 20k-40k

sloc

60k-80k 100k-500k

Project COTS assessment activity duration:

0-0.5yrs 0.5-1yrs 1-2yrs

Project COTS tailoring activity duration (reflects multi-
COTS classes per project):

0-0.5yrs 0.5-1yrs 1-2yrs 2-4yrs 4-6yrs

8-12yrs

Project COTS glue code creation duration (reflects multi-
COTS classes per project):

0-1yrs 1-2yrs 2-3yrs 3-4yrs 4-5yrs

Project COTS assessment activity effort (reflects multi-
COTS classes per project):

0-0.5 0.5-1 1.-2 2.-4 4.-6 6.-8
p-yrs

Project COTS tailoring activity effort (reflects multi-COTS
classes per project):

0-0.5 051 1-2 2-4 4-6 6.-8 10.-20 20-40 40-60
p-yrs

Project COTS glue coding activity effort (reflects multi-
COTS classes per project):

0-05 052 2-4 4-6 6.8
p-yrs

15-25 80-120

Project system effort due to COTS volatility:

3 3

2 2
T T T
0-2 2.-4 4.-6 6.-9

p-yrs

20-40 40-60 300-400

Project percentage system rework effort due to COTS
volatility:

16

1
| —

20-30%

0-5% 5-10%

Project total COTS effort in system (assessment+
tailoring+glue code+ volatility effort):

2

1 el afan

01 1020 20-30 30-40 40-50 50-70
p-yrs

100-200 400-500

5 OBSERVATIONS

The data presented here represents an interim state of the
COCOTS calibration database. As of this writing, the
database contains information on some 20 industrial
software projects--and data collection is continuing. As the
database grows, even greater insights regarding COTS
software integration will be possible. Meanwhile, there are

enough data points currently available to draw some
preliminary conclusions. (Keep in mind, though, that the
statements that follow are at best rules of thumb gleaned
from trends that seem apparent in the data—there are more
than afew countervailing examplesin each case.)

All COTS assessment activity on a project appears most
typically to be completed within 6 calendar months, with
no more than 6 person-months in effort expended to do
assessment for any given class of COTS components.

The spread in typical schedule for completion of the
tailoring of all COTS components is greater than that for
assessment, but still, more often than not, all tailoring
appears to be completed within 6 calendar months--with
again, no more than 6 person-months of effort expended for
any given class of COTS products.

The data indicates Glue code typically takes longer and
requires more effort to complete than tailoring. This may be
because the “intellectual effort” required to simply
configure (or tailor) a given COTS product is usually less
than that required to create code around it that is not only
new but also highly constrained—the situation that exists
with glue code. The typical overall schedule for creation of
al glue code in a system appears to be from 1 to 2 years,
with up to 2 person-years of effort expended.

The effort associated with managing the impact of the
volatility of COTS components on the larger system
continues throughout the life of the project. Rather than
trying to determine a distinct schedule for “managing
volatility,” its impact on overall project schedule would
probably best be accounted for by combining that effort
with all other project effort and then feeding that aggregate
effort into a schedule model similar to the COCOMO 11
schedule equation. In the meantime, the relatively low
percentage of system rework due to COTS volatility
reported for most of the projects in our database probably
reflects the database’ s current reporting horizon: the end of
the initial development phase. As COCOTS is expanded to
cover the long-term operations & maintenance phase of a
project, the relative percentage of system rework due to
COTSvolatility can be expected to increase.

6 LATEST CALIBRATION RESULTS

The performance of the first three submodels based on the
most recent calibration efforts are presented in this section.
Be aware that this is still considered an experimental,
interim calibration. Because the calibration database is still
relatively small, all data points available were included in
the calibration and the tests of the model's accuracy were
then run against those same data points. The more rigorous
approach of course is to set aside a subset of the available
data to serve as a control group against which to test the
model's accuracy based upon a calibration using the other
remaining data points. Thiswill be done for COCOTS once
asufficient number of additional data

10.23.2000 Total Program COTS Integration Effort

Total FPAE (PM)
Brogram Est Rent Q% Rarr

A 110.998 87 27.58% A 324.3163
B 17.25 40 -56.88% B 2.07
C 19.584 4 389.60%
D 45.993 69 -33.34% D 12.67
G 12 7 71.43% G 8
H 5.001 6 -16.65% H 21.96
| 17.227 21 -17.97%
J 14.5 24 -39.58% J 38.01
K 24.329 18 35.16% K 18.15
L 7.503 {5, 0.04% L 50.82
M 1.248 1.25 -0.16% M 3
N 9.668 45 114.84% N 28.15
(0] 26
P 137.79
Q 13.386 6 123.10% Q 4
R 29.931 1475 -79.71% R 46.3309
S 68.53 58 18.16% S 61.3228
T 11.32
] 6

points are added to the calibration database to make this
practical. Until then, it is felt that results from the current
calibration are still useful as a means to gain insight into
the model's performance.

10.23.2000 Total Program COTS Integration Effort

Total COTS IE (PM)

Proaram Est Rent %Rerr
R 76.26 787.5 -90.32%
L 60.10 200.5 -70.03%
K 44.06 112 -60.66%
D 63.61 155 -58.96%
o 621.03 1423 -56.36%
M 43.01 85.25 -49.55%
S 159.69 259 -38.34%
H 27.75 38 -26.98%
E 196.43 250 -21.43%
| 17.23 21 -17.97%
J 53.34 63 -15.34%
G 92.08 102 -9.73%
T 11.32 12 -5.67%
U 128.74 125 2.99%
Q 95.89 82 16.93%
A 439.66 367 19.80%
P 227.18 138 64.62%
N 54.75 325 68.48%
C 19.58 4 389.60%
B 731.14 103 609.84%

10 out of 20 (50%) of COTS Integration estimates within (+/-) 40% of actuals.

7 CONCLUSIONS

The next step in analyzing the data would be to look for
correlation between various items. For example, between
the overall size of a given project and the amount of glue
code typically found in a COTS-based system; between
overall project size and total COTS integration effort;

Total PTE (PM)
Brogram = Est- Rent %Rarr

Total Glue Code (PM)
Brogram Est Rent %Rarr

268 21.01% A 4.35 12 -63.75%
8 -31.00% B 711.82 60 1086.36%
12 5.58% D 4.94 74 -93.32%
E 196.43 250 -21.43%
11 -27.21% G 72.08 84 -14.19%
26 -15.54% H 0.79 6 -86.90%
38 0.03% J 0.83 1 -17.27%
90 -79.83% K 1.58 4 -60.49%
186 -72.68% L 1.78 7 -74.64%
3 0.00% M 38.76 81 -52.15%
16 75.94% N 16.94 12 41.14%
12 116.67% O 595.03 1411 -57.83%
42 228.07% P 89.39 96 -6.89%
4 0.00% Q 78.50 72 9.03%
640 -92.76%
183 -66.49% S 20.84 18 65.79%
12 -5.67%
50 -88.00% V] 122.74 75 63.65%

between integration schedule & effort and individual
classes of COTS components, etc.

It might also be useful to attempt calibrations of the model

across various stratified subsets of the data, for example,

against all projects that were considered to be successful, or
against al projects of a certain size. Experience with

COCOMO Il has shown that basing calibrations on

stratified data can greatly improve the performance of a
model for projects that are homogeneous with the data
stratification criteria.

ACKNOWLEDGEMENTS

Wewould like to thank the following groups for supporting
the development of COCOTS: the USAF, the FAA, the
Office of Naval Research, the SEI, the USC-CSE
Affiliates, the members of the COCOMO Il research group,
and most especially the organizations and individuals that
have so generously supplied us with data.

REFERENCES

1. Abts, C.,, Boehm, B. and Bailey Clark, B., “COCOTS:
a COTS software integration cost model,” Proceedings
ESCOM-SCOPE 2000 Conference, April 2000.

2. Officia COCOTS
http://sunset.usc.edu/COCOT S/cocots.html .

3. Boehm, B., Clark, B., Horowitz, E., Madachy, R.,
Shelby, R. and Westland, C., “Cost Models for Future
Software Lifecycle Processess. COCOMO 2.0, in
Annals of Software Engineering, 1995.

website:

4. Boehm, B. Software Engineering Economics, Prentice
Hall, NJ, 1981.

5. Boehm, B. et a, Software Cost Estimation with
COCOMO I, Prentice Hall, NJ, July 2000.

